1,775 research outputs found

    Joint Demosaicking and Denoising in the Wild: The Case of Training Under Ground Truth Uncertainty

    Full text link
    Image demosaicking and denoising are the two key fundamental steps in digital camera pipelines, aiming to reconstruct clean color images from noisy luminance readings. In this paper, we propose and study Wild-JDD, a novel learning framework for joint demosaicking and denoising in the wild. In contrast to previous works which generally assume the ground truth of training data is a perfect reflection of the reality, we consider here the more common imperfect case of ground truth uncertainty in the wild. We first illustrate its manifestation as various kinds of artifacts including zipper effect, color moire and residual noise. Then we formulate a two-stage data degradation process to capture such ground truth uncertainty, where a conjugate prior distribution is imposed upon a base distribution. After that, we derive an evidence lower bound (ELBO) loss to train a neural network that approximates the parameters of the conjugate prior distribution conditioned on the degraded input. Finally, to further enhance the performance for out-of-distribution input, we design a simple but effective fine-tuning strategy by taking the input as a weakly informative prior. Taking into account ground truth uncertainty, Wild-JDD enjoys good interpretability during optimization. Extensive experiments validate that it outperforms state-of-the-art schemes on joint demosaicking and denoising tasks on both synthetic and realistic raw datasets.Comment: Accepted by AAAI202

    On reducing mesh delay for peer-to-peer live streaming

    Get PDF
    Peer-to-peer (P2P) technology has emerged as a promising scalable solution for live streaming to large group. In this paper, we address the design of overlay which achieves low source-to-peer delay, is robust to user churn, accommodates of asymmetric and diverse uplink bandwidth, and continuously improves based on existing user pool. A natural choice is the use of mesh, where each peer is served by multiple parents. Since the peer delay in a mesh depends on its longest path through its parents, we study how to optimize such delay while meeting a certain streaming rate requirement. We first formulate the minimum delay mesh problem and show that it is NP-hard. Then we propose a centralized heuristic based on complete knowledge which serves as our benchmark and optimal solution for all the other schemes under comparison. Our heuristic makes use of the concept of power in network given by the ratio of throughput and delay. By maximizing the network power, our heuristic achieves very low delay. We then propose a simple distributed algorithm where peers select their parents based on the power concept. The algorithm makes continuous improvement on delay until some minimum delay is reached. Simulation results show that our distributed protocol performs close to the centralized one, and substantially outperforms traditional and state-of-the-art approaches

    CACAO: Distributed Client-Assisted Channel Assignment Optimization for Uncoordinated WLANs

    Full text link
    • …
    corecore